Esta tecnología, que recibe el nombre de fotosíntesis artificial, está inspirada en el proceso fotosintético que se produce en la naturaleza (en el que las plantas aprovechan la energía solar para transformar la materia orgánica en compuestos orgánicos, liberando la energía química almacenada en los enlaces de la molécula adenosina trifosfato, ATP, y obteniendo compuestos energéticos como azúcares y carbohidratos).

La producción de hidrógeno de forma eficiente utilizando materiales semiconductores y luz solar constituye un reto crucial para hacer realidad un cambio de modelo energético hasta una tecnología de conversión sostenible, basado en recursos inagotables y respetuoso con el medio ambiente. “Aunque el rendimiento energético del dispositivo no es, en estos momentos, suficiente para pensar en su comercialización, estamos explorando distintas vías para mejorar su eficiencia y demostrar que esta tecnología constituye una alternativa real para satisfacer la demanda energética del siglo XXI”, comenta Sixto Giménez, uno de los investigadores responsables del trabajo.

El hidrógeno es un elemento muy abundante en la superficie de la tierra, pero en su forma combinada con el oxígeno: el agua (H2O). La molécula de hidrógeno (H2) contiene mucha energía que puede ser liberada cuando se quema debido a la reacción con el oxígeno atmosférico, un proceso cuyo único residuo de combustión es el agua. Para convertir el agua en combustible (H2), hay que romper la molécula H2O, separando sus componentes.

Para que el proceso se realice de forma renovable (sin utilizar reservas fósiles del subsuelo) es necesario utilizar un dispositivo que emplee la energía de radiación solar y, sin ninguna otra ayuda, realice las reacciones químicas de romper la molécula de agua y formar hidrógeno, de forma similar a como lo hacen las hojas de las plantas. Por este motivo, estos dispositivos reciben la denominación de hoja artificial.

El dispositivo se sumerge en la solución acuosa y cuando se ilumina con una fuente de luz genera burbujas de gas hidrógeno. En un primer paso, el grupo de investigación ha utilizado una disolución con un agente oxidante de sacrificio y estudia la evolución del hidrógeno producido por los fotones. “Ahora el reto más importante", comenta Iván Mora, miembro del equipo que ha desarrollado el dispositivo, "es comprender los procesos físico-químicos que se producen en el material semiconductor y en su interfase con el medio acuoso, para racionalizar el proceso de optimización del dispositivo”.

El desarrollo de la hoja artificial es un gran desafío científico por la dificultad que supone la selección de los materiales que intervendrán en el proceso, de forma que funcionen continuamente y sin descomponerse. Actualmente, el Grupo de Dispositivos Fotovoltaicos y Optoelectrónicos de la Universitat Jaume I es uno de los pocos grupos de investigación a nivel mundial que han demostrado la viabilidad de un dispositivo de estas características, junto a los laboratorios norteamericanos del MIT en Boston o NREL en Denver.

El director del grupo de investigación Juan Bisquert comenta que “en comparación con otros dispositivos, el desarrollado por la UJI presenta la ventaja de su bajo coste de producción y de una mayor recolección de los fotones incidentes de la luz, utilizándose para la producción de hidrógeno fotones incluso del espectro infrarrojo”.

En la experimentación con este dispositivo también han participado otros miembros de grupo de investigación como Eva Maria Barea, Francisco Fabregat, Roberto Trevisan, Maria Victoria González, Pau Rodenas, Pablo P. Boix y Laura Badía.



Dejar una respuesta

avatar
  Suscribir  
Notificar de